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Abstract

Task definition: Implement a GUI for generating presets for the robot.
Create an on-board UI for user interaction and allow the se-
lection of pre-installed values through the UI.
Developing a row turning algorithm for autonomous plant
spraying applications.

Goals: The preset creation tool needs to be a GUI, which should be
able to take at least six values into account and write them
into an ROS YAML file. This file is then transferred to the
robot for later use.
In regards to the OBUI, the user can choose between five
presets and is able to switch between auto mode and manual
mode via a push button.
The row changing algorithm has to work in the test environ-
ment of the FHGR, where it has to turn into the next row
of plants without hitting anything and not going over the al-
lowed turning space. With rows that are open at the and and
rows which are closed at the end.

Approach: While waiting on the robot’s arrival from Hamburg, we con-
centrated our efforts on setting up a Gazebo simulation while
working in parallel on the OBUI and PCT. Once the ADIR
arrived, the focus shifted to the row change, prioritizing in
field testing.

Outcome: The on-board UI and preset creation tool work as intended.
In the simulation, both of the row changes work well and re-
liably. In the real world however, the outcome depends quite
heavily on the light conditions. Additionally, a different plan-
ner needs to be implemented, in order to be able to perform
a backwards row change in unknown spaces.
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1 Abbreviations

AMCL Adaptive Monte Carlo Localization

CAD Computer Aided Design

DC Direct Current

ESP32 Espressif System 32

FHGR Fachhochschule Graubünden

GUI Graphical User Interface

ID Identification

IMU Inertial Measurement Unit

LCD Liquid Crystal Display

LED Light Emitting Diode

LIDAR Light Detection and Ranging

OBUI On Board User Interface

PCT Preset Creation Tool

ROS Robot Operating System

RTAB-Map Real-Time Appearance-Based Mapping

SLAM Simultaneous Localization and Mapping

SSH Secure Shell

SSH -X Secure Shell with X11 Forwarding

TF Transform Tree

UI User Interface

URDF Unified Robot Description Format

VNC Virtual Network Computing

VO Visual Odometry

6



XRDP Open-Source Remote Desktop Protocol

YAML Yet Another Markup Language
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2 Records of change

Record of Changes

Version Reason for Change Initials Date

1.0 Creation of this document DS 07.11.2023

2.0 Work on project completed DS & LM 31.12.2023

3.0 Final version of documentations DS & LM 07.01.2024
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3 Introduction

3.1 Context

The customer of this project is Ant Robotics. They are currently situated in Hamburg.
Their goal is to build robots to help in the agricultural sector. This project is about
programming a PCT, building an OBUI and developing a row change algorithm.

3.2 Assignment

The preset creation tool (PCT) is a GUI, with which users can set up a preset in YAML
form, without having to write the file themselves. The presets then get loaded onto a
robot to inform it about its surroundings. The PCT has to work on Linux Debian and
has to take at least six values into account, it needs to have a GUI with pictures on it
to, make it easier to understand for the user.

The OBUI is wired up on a PCB breadboard and a functional prototype of it is built.
With this, the user can choose between five presets. During operation, it is possible to
pause the robot, stop the program and put the robot into a manually controlled mode.

A row turning algorithm has to be designed for planters with open and with closed
endings. The aim is to have it turn in a set space with as little damage to the ground
as possible.

3.3 Approach

First, a specification requirements document has been written to use as a base for the
different concepts.

For each task different concepts were made and compared against each other to determine
the approach, which bring the most value to Ant Robotics. Important factor was also,
whether they could be completed in the available time frame.

As part of the project, we were invited to visit Ant Robotics in Hamburg. There we
would configure the robot together and visit a farm, where the application would take
place. Afterwards, the ADIR is sent to Chur.

9



While waiting for the robot to arrive, a Gazebo simulation will be set up for first testing.
The OBUI and PCT will be developed in parallel. Once the robot arrives, it is most
important to do as much in-field testing as possible. For that, a testing environment is
set up. To test approaches in real life has much more value to Ant Robotics for their
particular use case.
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4 Clarification of the task

In this chapter, the most important section of the specifications are shown as well as
the system boundary and the project description. For the whole specifications, see
attachment 5.

4.1 System boundary

For the scope of this project a system boundary diagram was made. Ant Robotics will
provide us with the necessary ROS wrappers as well as a the end of row message. On
our side we will develop the PCT, OBUI and row changing algorithm.

Figure 4.1: system boundaries
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4.2 Project description

For the scope of this project three different sub-projects needed to be completed. The
PCT which takes user input and provides us with row parameters and has to take at
least six parameters into account and compiles a ROS YAML file. The presets are then
used in a later component of this project.

The OBUI serves as an interface for preset selection on top of the robot. Additional
functionality includes pausing the program and switching into a manual control mode.
All of the inputs get sent over CAN bus to the ADIR, which is outside the scope of this
project.

The row change turning algorithm takes a ROS message to start and sends out a ROS
message when it is finished. The algorithm always has to make sure that the robot turns
forward into the next row in a limited turning space. Turning backwards out of a row
and turning forwards out of a row have to considered.

4.3 Requirements

In the following table are the most important must have requirements listed. For the
full list see Attachment 5.

ID Description

ID 1 The robot starts the row change forwards after receiving a ROS
message with a boolean ”true”.

ID 2 The robot starts the row change backwards after receiving a ROS
message named ”NAME” on the topic ”TOPICNAME”.

ID 3 The robot ends the row change after sending a ROS message on
a topic.

ID 4 The robot drives forwards out of the row and forwards into the
next row.

ID 5 The robot drives backwards out of a row and drives forward into
the next row.

ID 6 The robot changes to the next row given a predetermined space.

ID 9 The preset creation tool takes 6 parameters into account.

ID 10 The output datatype of the file generated from the PCT is ”ROS
YAML”.

ID 20 The user can choose between 5 presets.
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ID 21 The user can press a push-button to switch between auto-mode
and manual-mode.

ID 22 In the On Board UI, an Arduino or ESP32 microcontroller is
used.

Table 4.1: Must-have Requirements
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5 Concepts

The following sections provide an overview on concepts chosen by our client Ant Robotics.
Splitting the projects in three parts:

• PCT

• OBUI

• Row change

For each of them different kind of concepts were put together and evaluated. The con-
cepts were chosen in a concept decision meeting and additional input from Ant Robotics
was added to the concepts. For a full list of all concepts see Attachment 9.

5.1 Preset Creation Tool

Functionality

Six values can be taken into account in the preset creation tool. If additional values are
needed, they can be added later. The user interface lets the user input all the values
into their respective boxes, give the file a name and save it.

While entering the values the user will have 2 pictures on the UI to guide them through
the process. Every input value can be seen on a picture to minimize errors and misun-
derstandings.

Value Constraints

All values have predefined minimum and maximum limits, as well as specific data types.
If any of these conditions are not met when entering values, the tool will trigger an error
message.
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Figure 5.1: PCT concept design 1

Figure 5.2: PCT concept design 1 - input window
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Figure 5.3: Invalid value case

Figure 5.4: Invalid datatype case
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Saving Presets

To save a preset, the user can provide a unique name for it. After entering the values
and naming the preset, simply press the ”Save Values” button to complete the process.
The presets are saved as a ”ROS YAML” file.

5.2 On-Board-UI

Figure 5.5: OBUI concept design 1

Functionality

Selecting Presets

• The LCD screen (1) displays the selected preset.

• To choose a preset, simply scroll through the options using the rotary encoder (3).

• After choosing a preset, it can be launched by pressing the auto on/off button (4).

• The status LED (4.1) will turn on, indicating that the robot is in auto mode, while
the other LED (4.2) will turn off.

Pausing the Machine

• If the user wants to pause the machine, they can press the rotary encoder (3) once.

• The LED (4.1) will start blinking, indicating that it is paused.

17



No. Concept Description

1 LCD Screen
• A LCD screen to display the name of the se-
lected preset.

• It can show 10-15 characters.

2 Emergency Stop
• Interrupts the power source.

3 Rotary Encoder
• Turning the encoder will scroll through the pre-
sets.

• If the robot is moving autonomously, pressing
it will pause the robot, pressing it again will
make it continue.

4 Auto ON/OFF
• A push-button, pressing it after choosing a pre-
set will put the robot in auto mode.

• Pressing the button again while in auto mode
will put it in manual mode.

4.1 LED
• Red status LED, indicates that the auto mode
is on.

4.2 LED
• Green status LED, indicates that manual mode
is on.

Table 5.2: OBUI interface - concept 1
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• Pressing the rotary encoder (3) again will turn the LED (4.1) back on permanently
and the robot will resume its operation.

Emergency stop

• Pressing the button (2) will turn off the machine immediately.

Hardware list

• 1 LCD Screen

• 1 Technical Emergency Button

• 1 Incremental encoder

• 1 LED red

• 1 LED green

• 1 Push-button

Pros & Cons

Pros Cons

• Selected preset can be seen on
screen.

• Incremental encoder is easy to use.
• LEDs indicate the current mode.
• Visible in bright sunlight.
• Cost efficient LCD display.

• Only one preset at a time can be
seen.

• Eventually time consuming to find
preset.

5.3 Row Change

The robot calculates an ideal path from the parameters generated in the PCT. Depending
on the available space, the robot chooses one of several path types.

• Continuous curve into the next row.

• Two Ninety-degree turns on the spot.

To increase the amount of available data even further, a stereo camera can be used in
conjunction with the odometry.
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(a) Simple turn (b) Right angle turn

Pros Cons

• Distance to objects at different
heights can be measured.

• Object recognition included
• If already used for row following, it
would be an inefficient use of re-
sources to not use it for the row
change too.

• Even higher cost
• Uses more processing power
• Additional time to get familiar with
the technology is required

Used sensors and cost

• Incremental wheel encoders

• IMU

• Stereo camera ZED 2i

• → Cost: ≈ 500 e
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6 Preset Creation Tool

The Preset Creation Tool is a Python-based application designed to assist users in defin-
ing the properties of the surroundings they want to pass through with the ADIR. The
tool provides a graphical user interface (GUI) using the PyQt6 framework. Following
parameters are taken into account.

6.1 Parameters

Row end state Is the end state of the row, if it is open or closed. Open
means, there is an open space on the opposite side of the
start, closed means to robot has to drive backwards out
of the row in order to turn.

Initial turn option Is the turning direction at the beginning, if the first turn
goes to the right or to the left.

Non driveable rows Gives information which rows are not able to be driven
through by the robot.

Number of rows Is the number of rows the robot has to pass through before
completing its task. This does include the non driveable
rows.

Plant row length Is the length of the plant rows.

Plant row width Is the width of the plant rows.

Turning distance 1 Is the available turning depth at the beginning of the row.

Turning distance 2 Is the available turning depth at the end of the row.

Inner row distance Is the distance from one middle of one row to the next.
It is thus the space between two plant rows as well.

Outer row distance Gives information about the distance from the wall to the
first plant row.

Table 6.1: PCT parameter list
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6.2 Design

Figure 6.1: PCT design with closed rows

Figure 6.1 and 6.2 show x a screenshot of the finished tool in an example configurations.

On the left side, the user is shown all of the available parameters as either check boxes or
text input fields. For the undriveable rows, the row numbers are separated by commas.
All of the measurements are interpreted in metres.

The image on the right shows a sketch of a field of plant rows. It updates its look
depending on the selection of the row end state checkbox. Every time one of the options
is checked, the corresponding sketch is shown. To aid the user in finding the correct
parameters, all of the measurements are drawn as well.
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Figure 6.2: PCT design with open rows

6.2.1 Error handling

Upon saving the user input will get validated. The three following error catching in-
stances are implemented:

• The user enters an invalid character

• The user enters a non valid datatype

• The user does not choose a checkbox

A minor fourth error catching is implemented to beware the user of entering accidentally
values that are too high or too low. The value will be set to either the minimum or
maximum value. Those three error instances are enough to catch every user error and
guarantees the generation of a valid YAML file.

23



(a) character check

(b) datatype check

(c) checkbox check

Figure 6.3: Error windows for all of the possible unusable user inputs

6.2.2 Usage

Upon launching the application, users are presented with an graphical user interface.
Users can interact with checkboxes and input fields to define various parameters such
as row distances, widths, lengths, and configuration options. Checkbox interactions
allow to choose turning options, row end states (open or closed), and driveable row
configurations. Upon entering the desired settings, users can save their configurations
as YAML files as seen in Figure 6.4

24



Figure 6.4: Generated YAML file

6.2.3 Functionality

Most of the interactions with the tool take place in the main window. When saving the
file, the tool will start to check for any incorrect inputs. First the checkbox values will be
looked at and handled accordingly, to see whether they are are any missing user inputs.
The text inputs are handled separately with different criteria for errors for each of the
input fields. When the values pass all of the checks, they will be combined and exported
as a YAML file. Figure 6.5 shows, in which window each of the actions happen.
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Figure 6.5: Sequence diagram
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7 On-board-UI

The On-Board UI, henceforth OBUI, is used for easy control of the robots presets in the
field by potential customers.

7.1 Construction

The OBUI consists of the following parts:

• 2 red LEDs

• Incremental encoder

• Push button

• LCD display

• Arduino Uno R4 minima

Since the ADIR was already equipped with an emergency button as seen in Figure 8.1,
the emergency button on the OBUI will be left out.

The LEDs are both the same colour, because the shipment of the green ones got cancelled.

To house all of the parts in one unit, a simple panel was designed with mounting space
for all of the components. Afterwards, the panel was extended into a box with an
additional backplate to protect the electronics from the environments. Figure 7.1 shows
the construction in Fusion360.

7.2 Electronics

The following sections dissects the schematic of the OBUI. To create it, the open-source
software KiCad was used.

7.2.1 Arduino

The electronics consist of an Arduino Uno R4 minima as the centerpiece, see Figure 7.2.
All other components are connected directly to it and draw their power from there as
well.
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Figure 7.1: OBUI case in CAD

Figure 7.2: Schematic part containing the Arduino and all of its connections
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The choice fell on this particular model, since it is relatively cost-effective compared to
other official Arduino offerings. Additionally, it offers greater performance compared to
most Arduinos and supports the CAN protocol natively.

With this approach it is possible to power the whole OBUI through USB or an external
6V to 24V supply. This leaves many approaches open to connect the assembly to the
rest of the robot.

7.2.2 Inputs

The input options consist of an incremental encoder with built-in push button, as well
as a separate push button.

(a) Encoder with recommended filter circuit (b) Push button

Figure 7.3: OBUI inputs

Figure 7.3a shows, that the encoder has been implemented with the recommended filter
circuit according to the datasheet [14]. The push button on the encoder, as well as the
separate one (7.3b) get a pull up resistor.

7.2.3 Outputs

To be able to see the currently selected preset, the choice fell on a simple LCD display
[8]. It consists of two rows, which are able to display 16 characters each. Communication
happens over I²C. Figure 7.4 shows the schematic part as well as the necessary pull-up
resistors.
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Figure 7.4: Schematic part containing the LCD display and the corresponding I²C pull-
up Resistors

Two additional LEDs show the current mode of the robot at a quick glance. They are
driven with a simple transistor amplifier, calculated according to the datasheets from
the LEDs [7] and the transistors [2]. Figure 7.5 shows the completed circuit.

Figure 7.5: Schematic part containing the two LEDs, run by a simple transistor driver

7.3 Software

For quicker development, pre-existing libraries were used whenever possible. Debouncing
the push buttons, reading the encoder and controlling the LCD are all solved via external
libraries.
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7.3.1 State machine

The OBUI software consists of a simple state-machine, consisting of four different states.
One for selecting a preset, a second one when the preset is running, a third one when
the preset is paused and the final one for pausing the program while running. Figure
7.6 shows the state event diagram of the program.

Figure 7.6: State event diagram of the OBUI

When the program starts, the user is able to use the encoder as a scroll wheel and
select a preset with the push button button. After that, the autonomous mode starts
automatically. The LED responsible for auto mode lights up.

During autonomous operation, the push button can be pressed in order to put the robot
into manual mode. The other LED will turn on and a corresponding message is shown
on screen. Another push will return the auto mode.

At any time, the incremental encoder button can be pressed, which sends a pause signal
to the robot. The lower LED starts blinking. When the encoder button is pressed again,
the program will be stopped and the user is greeted with the preset selection screen
again. Pressing the push button instead will return the program to its previous state.

Figure 7.7 shows all the different screens during operation. Also visible is the corre-
sponding LED, as described above.
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(a) preset Selection (b) Autonomous mode

(c) Manual mode (d) Paused

Figure 7.7: Screens of all the different states

7.3.2 Robot communication

Since the communication to the robot via CAN bus is not in the scope of this project,
placeholders were put in the source code. For every necessary message there is a simple
function declaration. The functions are already called in the state machine wherever
needed.

Example of such a function based on the pause function:

void can pauseProgram ( )
{

// Send pause over CAN bus
}

With a corresponding call in the state machine during manual mode:

e l s e i f ( encoder button . f a l l i n g ( ) )
{

can pauseProgram ( ) ;
. . .
s t a t e = PAUSE;
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}
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8 Row Change

The end goal of the application is a system, which is able to spray rows of plants
completely on its own. Our part of this project was implementing an autonomous row
change algorithm.

8.1 Platform overview

The working platform we were provided with is the ADIR, a mobile robot from ANT
ROBOTICS, as seen in Figure 8.1. It has a massive steel chassis which can be equipped
with different sensors. On the front of the robot is an emergency stop- and a general use
push-button. In a later revision, the emergency stop is connected to a safety bumper in
the front. There is enough space on either side to mount a double wheel configuration
for additional traction. Our configuration came with single wheels.

Movement type Differential drive

Number of Wheels 4

Weight 160 kg

Payload 400 kg

Width 100 cm

Length 110 cm

Height 60 cm

Number of motors 2

Voltage supply Dual 25.8V batteries

Top speed 4 km
h

Interfaces CAN

On board controls Push button and emergency button

Table 8.1: ADIR specifications
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Figure 8.1: ADIR mobile platform

8.2 ADIR hardware setup

Since testing the robot remotely was not possible in its current base state as seen in
Figure 8.1, a solution which allows us to work remotely on the ADIR had to be found.
The remote connection for working on the robot is necessary, because being right next
to it, while testing was not an option, since its weight of 160kg and sudden movement
posed a high risk for accidents. For the scope of this project setting up the ADIR for
remote work was not part of it, so a makeshift solution had to be made up. We had the
following options available at the time:

• Remote desktop connection with XRDP

• Remote desktop connection with VNC

• Remote desktop connection with SSH

• Video transmitter and receiver

Establishing a direct connection via a remote desktop, connection via XRDP was not
possible on the NVIDIA Jetson. VNC did work but required a display plug at the
NVIDIA Jetson at all times. Connection via SSH worked but allowed for terminal only
usage which did not allow us to monitor the ADIR in RVIZ. With an additional -X flag,
windows could be transmitted as well, but performance was incredibly lacking.

Using a display transmitter and receiver was left as the last option which we then opted
for after we were able to use hardware, which was available at the school. For mouse
and keyboard input we were using a mouse and keyboard setup which used a wireless
transmitter allowing us to work up to 8m remotely on the ADIR. Table 8.2 shows a
precise overview of all the different components.
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Computation NVIDIA Jetson Orin Nano

Power supply regulation Traco power DC/DC Converter to 12V

Power supply plug Designed and 3D Printed

Video transmitter Speaka professional

Mouse and keyboard
transmitter

TRUST Transmitter, included with wireless mouse and key-
board

LIDAR YDLIDAR TG15

Stereo camera ZED 2i

Wheel encoder ADIR built in encoders

Table 8.2: ADIR on board hardware

In order to power all the necessary hardware, the voltage from the batteries was converted
to a usable 12V via a DC-DC converter.

To be able to connect everything in time, a power plug was designed and 3D printed as
seen in Figure 8.2 and 8.3 instead of waiting for a supplier.

Figure 8.2: 3D printed plug

The plug connected the batteries to the DC-DC, which in turn supplied the NVIDIA
Jetson module with its high input voltage range. All of the other components are powered
through the USB connections. Figure 8.4 shows the complete connection diagram, Figure
8.5 shows what it looked like when connected. Note that the LIDAR is not connected,
since it was only used occasionally.
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Figure 8.3: Plug next to ADIR socket

Figure 8.4: Connection diagram

Figure 8.5: ADIR hardware setup
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Figure 8.6: video receiver
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8.3 ADIR software setup

8.3.1 Robot description

In order to be able to do anything relevant for this project, including setting up a
simulation environment, the first step in development was to create a virtual model of
the robot and all of its components.

For that, a so-called Unified Robotics Description Format (URDF) file is used. It con-
tains information about the different parts of a robot and how they are connected. For
example, where the camera is positioned in relation to the center of the robot.

Robot model

In order to create the URDF file for our purposes, a 3D model of the robot, provided
by ANT ROBOTICS, was used to create it automatically. For this purpose, a plugin
[10] for the popular CAD modeling software Fusion360 was used. Only a little bit of
preparation was needed on our end, to set the origin of all the parts according to the
URDF specifications. This consists partly of setting the rotational axis for the wheels
and setting the viewing direction for the camera.

Figure 8.7 shows the view in Fusion360 with all of the axis. Note that one of them
is rotated slightly upward. This is because earlier in the project, an upwards angled
LIDAR was used in order to detect objects higher up than the mounting spot on the
robot. This approach was later scrapped.

Figure 8.7: ADIR in Fusion360 with all the different origins visible. Red corresponds to
X-, Green to Y and blue to the Z-axis

This URDF file was then expanded to include additional plugins for simulation purposes
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with Gazebo. More on that can be found in Section 8.4.

8.3.2 Map converter

Overview

An earlier approach was to write a map converter. The general concept was to generate
a map from the preset values. The map is generated in the ”map converter” Afterwards
the map is given to the robot.

Map Converter

Figure 8.8: Flow diagram map converter

The task of the map converter lies in reading the generated YAML file from the preset-
creation-tool and generating a map according to the YAML file parameters. The gener-
ated map is an occupancy grid. After generation the map, it was supposed to be loaded
into the map server. In the future it could be implemented into the PCT. The user
would be able to see directly with what kind of map he would be working.

8.3.3 Runtime overview

As seen in Figure 8.9, the initial stage happens independently from the rest of the
program. The user generates a preset with our preset creation tool and loads the corre-
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sponding YAML files on the robot.

When the robot starts its autonomous operation, the aforementioned preset file gets
loaded as individual constants into the ROS parameter server. These values will later
be used to calculate the correct path to the next row. Additionally, a ROS node gets
launched, which will return a row change path upon request.

When this node receives the message, that a row change should be executed, it takes the
parameters from the server, obtains the current robot position and calculates a smooth
path around the rows. This path then gets published as a series of waypoints as well as
a continuous path. Specifically with a series of geometry msgs/ PoseWithCovarianceS-
tamped messages or a single nav msgs/ Path message respectively.

Figure 8.9: Row change program overview

For our project the following packages from the respective sources were used:

• Ant Robotics

– adir control

– ros can

• Open source ros packages
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– move base [22]

– rtab map [9]

– robot localization [23]

– follow waypoints [24]

– zed-ros-wrapper [29]

• Our packages

– row change trajectory

– map converter

As seen in 8.10 the green colored box is the package we have written, containing the row
change trajectory. From the row change trajectory the directional vectors are published
as set of waypoints to the package follow waypoints. They will afterwards be sent as
individual waypoints to the move base, which in turn sends velocity commands to each
waypoint.

The yellow colored boxes are the code Ant Robotics provided us. The blue colored
enclosures are open source ROS code. Sensor data is gathered from the wheel encoder,
and the stereo camera, for the stereo camera the ros package zed-ros-wrapper is used.
From the stero camera we get VO and IMU data. For generating the map, we use the
RTAB-Map package which gets the point cloud from the stereo camera. The different
transforms (tf) are used to tell the nodes and packages the physical relation to each
other.

Figure 8.10: Ros packages connection
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For a full overview of all topics and nodes and their corresponding connection see At-
tachment 6.

8.3.4 Sensor fusion

In order to increase the accuracy of the odometry, multiple sensor sources are fused
together with an extended Kalman filter (ekf) approach. In this case there are three
odometry sources:

• Wheel odometry coming from the robot platform. Returns current pose estimate
as well as translational and rotational speed.

• IMU, integrated in the stereo camera. Returns rotational velocity and translational
acceleration.

• Visual odometry, calculated by the stereo camera software. Returns pose estimates.

The first package tested for sensor fusion was robot pose ekf [28]. It natively supports
all three of the above-mentioned sources. Problem was, that the ZED software does not
publish a velocity estimate as part of its odometry, which made it not usable for the
real-life ADIR. The drift was simply too high after a short while. In simulation however,
without visual odometry, it still works reliably.

Since the pose estimate with robot pose ekf was not accurate enough for the row change
application, another package was tested. The ROS package robot localization [26], based
on the research by T. Moore and D. Stouch [4], is an ideal choice for this scenario. It
is possible to add any number of odometry and IMU inputs. Additionally, it is possible
to select, which of the 15-dimensional states should be taken into account from which
source.

The fifteen dimensions are:

• Pose: X, Y , Z

• Rotation: roll, pitch, yaw

• Translational velocity: Ẋ, Ẏ , Ż

• Angular velocity: ˙roll, ˙pitch, ˙yaw

• Translational acceleration: Ẍ, Ÿ , Z̈

We selected the following dimensions from each of the inputs:

IMU: Ẍ and ˙yaw

Wheel odometry: Ẋ, Ẏ and ˙yaw

Visual odometry: X, Y and yaw
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Ẏ was not included in the IMU, since this increases the drift in Y-direction. The rest of
the rotational axis are also not included, since the robot only moves in a two-dimensional
plane.

Any pose estimations were excluded from the wheel odometry, because it did not proof
accurate enough in testing.

Concerning the visual odometry, all the available information was used.

8.3.5 Localization

The localization is done by the open-source ROS package rtabmap slam [9]. Real-Time
Appearance-Based Mapping (RTAB-Map) is a SLAM algorithm designed to map out a
new area based on depth camera, point cloud or LIDAR information. In this application,
rtabmap slam is used, which is a ROS implementation to be used in 3DOF situations.

Initially, a ROS package with an adaptive Monte Carlo Localization (amcl) [18] was
used. It was easier to use, since it is a part of the ROS navigation stack, which we
used too. But in order to use it, the point cloud coming from our stereo camera had
the be converted into a single, two-dimensional laser scan and thus loosing information.
Additionally, it was using more computational power compared to rtabmap slam.

Using rtabmap posed an additional advantage over amcl. Since we are able to take
height of the obstacles into account, the robot is able to drive under obstacles where
there is enough space. This is very much beneficial, when the robot is able to execute
the row change in a tighter space when it knows that it is able to drive underneath the
planters or other obstacles as well.

Important for this application is also the fact, that rtabmap slam is able to do simulta-
neous localization and mapping (SLAM), instead of only localization. The robot does
not have have a pre-generated map of the area but must instead rely on its current
measurements of the surroundings.

8.3.6 Navigation

For navigation, a collection of ROS packages called navigation stack [23] was used. Cen-
tered around move base[22], it contains packages for localization, mapping and path
planning.

Move base is used to let an autonomous robot drive to a goal located on a map. If
only the parts from navigation stack were used to navigate to the next row, the taken
path could differ every time and the chance of unwanted movements is too high. With
an additional package, follow waypoints[24], we can publish multiple goals one after
another. This allows us to loosely follow a pre-calculated path.
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Within the navigation stack, there are multiple options concerning planners. They are
divided into global and local planners.

Global planners are responsible for finding the most efficient way in a map to the goal.
This gets published as the global path for the local path to follow.

Local planners are confined to the immediate surroundings of the robot. They watch
out for smaller obstacles along the way and try to control the robot, so it does not drift
too far away from the path generated by the global planner.

Move base implements different planners as plugins, which can be separately specified.

Global planner

Using the navigation stack provides three different global planners.

• global planner

• navfn

• carrot planner

For our approach, we have been using the global planner[20]. It is a more flexible version
of the navfn planner, which is the standard in the navigation stack. More parameters
can be adjusted for a better result of the global path.

Since we are sometimes driving backwards out of the row, and the sensors are only
attached at the front, it is important to have a planner that allows for planning in
unknown space. Even when driving forwards around to the next row, the stereo camera
is not able to take all the necessary information in at once and thus creates temporarily
unknown spaces. The other choices do not support such a behaviour.

Local Planner

The following local planners have been tried:

• base local planner

• dwa local planner

• teb local planner

The first tried local planner was the base local planner [22], since it is the default choice
when using move base. For this use case, this plugin could not be used, since only
forward motion is supported, which would only allow for the forward row change.

The dwa local planner[27], based on the work by Fox D, Burgard W and Thrun S [1], was
tried out next. Dwa is short for dynamic-window-approach. What made it attractive
was an extensive tuning guide, written primarily for this plugin [5].

45



In the simulation as well as in the field, the dwa planner proved to be quite reliable in
the forwards row change. It is not as smooth as hoped for, since it always stops at a
waypoint before going to the next one. This includes occasional turns on the spot in
order to match the angle given by the current goal. Backwards row changes were sadly
still not possible. The planner never realized, that driving in reverse was a viable option,
even though all the parameters were set to allow this type of movement.

The last tested option was the teb local planner[25], based on the time-elastic-band
approach [3] and additional work in trajectory optimization [6]. The many available
parameters allow for a well-tuned system for a specific application.

The teb local planner is also able to follow a path directly, instead of relying on goals
alone, which would allow the robot to follow the path to next row much more precisely.

8.4 Simulation setup

Since it is not easy to spontaneously test our algorithm anywhere on the university
perimeter, a simulation environment was created.

The simulation software of choice was Gazebo, the widest spread simulator for ROS
applications. We used Gazebo-classic, since this is the version that ships with our ROS
version, noetic.

For the robot itself, the URDF file also contains references to the individual 3D modelled
parts, which allows for a very precise footprint for the simulation. Figure 8.11 shows
what the model looks like when loaded into gazebo. Note the slightly floating LIDAR.
It is slightly raised, so that the mounting bracket does not obstruct the view when
experimenting with different upward angles without having to change the robot model
every single time.

Figure 8.11: ADIR loaded into gazebo
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8.4.1 Gazebo plugins

Included in the previously mentioned URDF file for the robot description are also a file
for sensor and one for movement plugins. To find and configure them, the official Gazebo
tutorial on this topic was used [19].

Sensors

Concerning the IMU, an imu plugin was used for simulation.

For the LIDAR on top of the robot, a simple setup consisting of a laser controller plugin
and a ray type laser sensor was used. Since a YDLIDAR TG15 sensor was provided by
Ant Robotics, the parameters for the simulated sensor were set as close to the parameters
of the TG15 as possible. The only exception is the number of samples, which was set to
2000 instead of 2700. Reason for that being, that the plugin is not able to compute any
higher number of rays than that.

Lastly, the stereo camera was simulated using a plugin, which is designed to emulate
the Kinect sensor by Microsoft. Since its release, it is popular choice for low-cost depth
camera applications in the robotics space. In our case, the parameters were tweaked to
match the ZED 2i stereo camera. In later test it was reveled, that the resolution had
to be lowered significantly in order to keep the simulation performance at an acceptable
level.

Movement

Since our robot platform ADIR is based on a skid-steer design, the aptly named skid-
steer-drive-controller was used. This plugin is not only able to control the robot, but
generate wheel odometry as well. To set the correct parameters, the 3D model was used
to get the measurements and the ADIR features page gave us the necessary information
to calculate the torque [16].

When testing out the simulation, movement was initially very inconsistent and uncon-
trollable. The simulated robot was sometimes not able to turn at all, at other times
it slid along the ground like it was on ice. The cause was later found in the friction
parameters defined by the URDF file. mu1, set in positive X-direction of the robot
needed to bet set higher, so that the robot could drive forward and backwards. mu1,
set in positive Y-direction needed to be lowered significantly, which enabled the robot
to slide slightly to the side, which in turn enabled a smooth rotation.

8.4.2 Simulation world

To get the simulation as close as possible to a real-life scenario, the plant rows were
modeled in CAD. Ant Robotics provided an example of a plant row by Metasa [21] as
well as additional measurements from a real farm.

47



The rows come in hanging and standing form. Both were modelled in Fusion360 in 10m
long segments. Figure 8.12a shows the completed model of a standing row. Figure 8.12b
is the hanging row.

(a) Standing row (b) Hanging row

Figure 8.12: The two types of rows modelled in Fusion360

To create the simulation world, five of the standing rows were put next to each other,
with the space according to measurements from the farm. At one end of the rows, there
is an available turning space of 2m, the other end has 2.2m. The difference is there in
order to test the tolerance in our turning algorithm. Figure 8.13 shows the completed
Gazebo simulation setup with the robot in its starting position.
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Figure 8.13: Simulation world in Gazebo containing the standing rows

8.5 Row change path

Since the ADIR has to move to the next row in a predetermined space, an approach to
make use of the preset parameters is preferred. Using those, an ideal trajectory can be
calculated to move around to the next row.

8.5.1 Trajectory function

The function responsible for calculating a smooth path is a segment of a stretched unit
circle.

To get as smooth of a turn as possible, the robot should utilise a big part of the available
turning space. For this, the following stretching factor in X-direction was chosen:

d1 = turning distance− ADIR width

2
− offset

Turning distance is loaded from the parameter server when the program is running.
Subtracting half the ADIR width would result in a curve that strafes the edge of the
allowed space very closely. For this purpose, an additional offset is added. This contains
an additional distance for reliability, as well as the additional distance lost by driving
out from the row.

In order to reach the next row in a single smooth curve, the diameter of the circle has to
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be equal to the distance between two rows, the row distance parameter from the preset.
Thus, the stretching factor in Y-direction equals:

d2 =
row distance

2

These parameters can be combined into the following function to describe a half circle:

ftrajectory =

d1 · sin(γ)
d2 · cos(γ)

 With γ ∈ [0, π]

To be able to send the correct direction at every point, the directions of the individual
points can be calculated by taking the derrivative of the trajectory function:

vtrajectory = ḟtrajectory =

 d1 · cos(γ)

−d2 · sin(γ)


Figure 8.14 shows an example of a such a trajectory. Note: The forward direction of the
map and thus the initial direction of the robot is in the direction of positive X.

Figure 8.14: Row change trajectory example with row distance of 2.5m, calculated in a
space of γ ∈ [0, π]

If the turn should be made in the other direction, the only change to the function is to
change its start and end point to:

γ ∈ [−π, 0]
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When only a ninety-degree turn is needed, the range of the function gets sliced in half.

8.5.2 Row change trajectory forwards

Looking at the row change forward trajectory, pictured in Figure 8.15, it is split into
three parts:

• Driving slightly out of the row for clearance

• Executing the turn into the next row

• Driving into the next row

Figure 8.15: row change forward trajectory

Red line ADIR length

Light blue line Trajectory function

Dark blue dotted line d1

Green dotted line d2

Table 8.3: Row change forward trajectory table

The resulting trajectory then consists of the calculated half circle, which is offset by the
distance used to drive out of the row.

Figure 8.16 shows an example of a calculated path in Rviz, set in the Gazebo simulation.
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Figure 8.16: Forwards trajectory, as seen in Rviz

8.5.3 Row change trajectory backwards

The trajectory in the backwards row change is made of 5 parts. We got two additional
actions compared to the forwards trajectory, reason for that is that the robot should
always drive forwards into the next row, since the stereo camera and the emergency
button are at the front. The following steps can be seen in Figure 8.17:

• Driving out of the row

• A quarter turn to line up the row change

• Moving to the next row

• Turning towards the row

• Driving into the row

Red line ADIR length

Blue line Trajectory function

Purple dotted line d2

Blue dotted line d1

Orange dotted line ADIR length

Table 8.4: Row change backward trajectory table

Figure 8.18 shows an example of a calculated path in Rviz, set in the Gazebo simulation.
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Figure 8.17: row change backwards trajectory

Figure 8.18: Backwards trajectory, as seen in Rviz
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Publishing the trajectory

When the correct ROS message is received by the row change trajectory node, it cal-
culates the path based on the parameters in the parameter server. Whether it should
change rows forwards or backwards, how much space there is to turn and how big the
length of the distance between two rows is.

Additionally, the current position of the robot needs to be taken into account. The path
around the rows gets offset by the coordinates and half of a row distance, in order to
start the turn on the curve itself, instead of sitting in the middle of the circle.

If the rows of the current environment are open, the robot needs to alternate between
turns in positive and negative X-direction. Depending on whether the turn is to the left
or the right, the directions of the individual points needs to be reversed.

After all of the calculations are completed, the waypoints are published as individual
poses, as well as a single path. This is to ensure compatibility with different ways of
following the path.
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9 Testing

9.1 Testing environment

The first testing environment was indoors in the FHGR mobile robotics lab, but testing
could not proceed there. Reason for that were the streaks the ADIR left while making
turns of any radius.

For further testing, it was necessary to find another location, where the condition of
the floor does not matter. In the end, permission was received to use an abandoned
industrial zone next to the university. On the premise, there is a shed which granted us
a cold, yet weatherproof testing environment.

The testing environment is a enclosed space with a approximately 30 square meters area
with natural lighting through a window front as seen in figure 9.1. An additional light
source is made up of a single LED tube which omits light from the opposite site of the
windows.

Figure 9.1: Testing environment with natural light
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A screen for remote control was set up on a table in a distance of approximately 150 cm
to the first row as seen in Figure 9.2.

Figure 9.2: Testing environment with spotlight

For a steady power supply, a cable reel was pulled over from the school to the shed.
Having a single power source limited the amount of watts we were allowed to use.

In regards to that, the light source had to be switched from a strong spotlight 9.2 to a
LED tube 9.3. This sadly reduced the amount and quality of light we were able to get
tremendously.

For the row replacement, multiple bike stores have been called to ask for bike cartons.
Bike cartons offer the perfect size and limit the risk of damaging the ADIR if it should
drive directly into the rows. See Figure 9.4

In the testing environment are three fake plant rows which are put up with a spacing of
150 cm. Because of the space constriction, only a closed-row setup would fit. Open rows
were tested anyway, but could not be tested in both ways.
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Figure 9.3: Testing environment LED tube

Figure 9.4: Carton row replacement
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9.2 Forwards row change

The forwards row change has proven to be successful in both the simulation and in field
testing.

9.2.1 Simulation configurations

For the forwards row change in the Gazebo simulation environment, the following pa-
rameters have been used in different configurations while testing:

Configuration 1

Global planner navfn

Local planner base planner

Number of waypoints 11

Pre-generated map Yes

Table 9.1: Testing parameters simulation forward row, configuration 1

At first, the approach had an additional step of generating a map of the environment
from the preset file and using that for navigation. This did not prove to be useful in this
use case, since the localisation algorithm was unable to pinpoint the current position of
the robot. The map did not contain enough detail information.

Configuration 2

Global planner navfn

Local planner base planner

Number of waypoints 11

Pre-generated map No

Table 9.2: Testing parameters simulation forward row, configuration 2

So the pre-generated map was removed and instead used a SLAM algorithm now. This
proved much more successful and the simulated ADIR was able to drive towards the
waypoints. After the robot reached a few goals however, it would always get stuck right
next to the path, unable to find a way to move sideways back on the path.
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Configuration 3

Global planner global planner

Local planner dwa local planner

Number of waypoints 7

Pre-generated map No

Table 9.3: Testing parameters simulation forward row, configuration 3

Finally after switching out both the local and global planner and tuning their parameters,
the robot was able to drive to each waypoint one after another and drive into the next
row.

Simulation results

The results from the simulation were promising. Even though the robot had to explore
its surroundings as it was following the waypoints, it now followed the path reliably.

9.2.2 In field configuration

For the forwards row change in the FHGR testing environment the following parameters
have been used in different configurations while testing:

Configuration 1

Global planner global planner

Local planner dwa local planner

Light condition Daylight with closed shed

Number of waypoints 7

Pre-generated map No

Table 9.4: Testing parameters in-field forward row, configuration 1

The first test in the shed were promising. Most of the time, the robot got a few waypoints
in, before ultimately getting stuck somewhere along the way.

As it turned out, the light level was insufficient and because of that, the stereo camera
and odometry occasionally reported the same obstacles again, but a few meters further
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away from the current position. This resulted in the trajectory strafing a non-existing
obstacle and the robot not being able to get close enough to the waypoints.

Configuration 2

Global planner global planner

Local planner dwa local planner

Light condition Daylight with open shed and LED bar

Number of waypoints 7

Pre-generated map No

Table 9.5: Testing parameters in-field forward row, configuration 2

After opening all of the doors, including the large garage entry, there was enough light
for reliable mapping and localization. With some subsequent parameter tuning for the
in-person ADIR, the row change was now working reliably. Even minor imperfections in
the map did not pose an issue.

9.2.3 In field results

The results in the shed were very dependent on the current light level. Later on in the
evening, even with multiple artificial light sources it was not possible to get accurate
positional readings anymore.

On a single day during the available test phase, the weather was good enough to test
our setup in broad daylight. The issue here was, that there was now a much larger
amount of data for the stereo camera to process, since it was not in a crammed garage
anymore. With this addition required processing, the Jetson could not keep up with the
calculation and positioning was even less reliable than in the dimly lit garage.

9.2.4 Summary forwards row change

In both the simulation and the testing environment at the FHGR the ADIR did suc-
cessfully complete the row change without damaging or hitting the rows.

In the real world, the amount of light and the processing power are however limiting
factors.
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9.3 Backwards row change

For the backwards row change, tests in a Gazebo simulation and the FHGR testing
environment were done.

9.3.1 Simulation configurations

For the backwards row change in the Gazebo simulation, the following parameters have
been used in different configurations while testing:

Configuration 1

Global planner global planner

Local planner dwa local planner

Number of waypoints 31

Pre generated map No

Table 9.6: Testing parameters simulation backward row, configuration 1

The ADIR showed no direct backwards motion, but started a rotary recovery, meaning
the ADIR spun in circles hitting the rows. Using the dwa local planner for a backwards
motion in a straight line has been working.

Configuration 2

Global planner global planner

Local planner teb local planner

Number of waypoints 31

Pre generated map No

Table 9.7: Testing parameters simulation backward row, configuration 2

A change from the dwa local planner as seen in configuration one, see 9.6, to the
teb local planner was made. The ADIR did drive backwards but upon reaching each
waypoint took a large amount of time to reach the exact waypoint. While trying to
reach the waypoint the ADIR tried to position himself as best as it could, meaning it
would drive forwards and backwards numerous time per waypoint. This configuration
was deemed unusable.
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Configuration 3

Global planner global planner

Local planner teb local planner

Number of waypoints 11

Pre generated map No

Table 9.8: Testing parameters simulation backward row, configuration 3

Keeping the planner from configuration two, see 9.7, the only change made was the
amount of waypoints. The ADIR showed improved functionality and was still able to
follow from one waypoint to the next without stopping at everyone to replace it self.
The local planner can generate a longer path which helps the ADIR to redirect himself
directly while driving. The row change backwards was successfully done in the simula-
tion.

Configuration 4

Global planner global planner

Local planner teb local planner

Number of waypoints 5

Pre generated map No

Table 9.9: Testing parameters simulation backward row, configuration 4

Seeing as the performance has improved with less waypoints another test was done with
the changing parameter being the number of waypoints which were reduced to 5. With
a number as less as five the ADIR tried to turn around and drive forwards to the next
waypoint which is not what it is pursued within this test. A number of five waypoints
was deemed unusable.

9.3.2 Simulation results

In regards of testing in the simulation, configuration 3, see 9.8, was the most successful
and has fulfilled a row change backwards without striving from its trajectory or hitting
any of the rows.
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9.3.3 In field configuration

For the backwards row change in the FHGR testing environment, the following param-
eters have been used in the configuration:

Configuration 1

Global planner global planner

Local planner dwa local planner

Light condition Dusk and LED tube

Number of waypoints 11

Pre generated map No

Table 9.10: Testing parameters in-field backwards row, configuration 1

For configuration one the dwa local planner was used since the parameters already have
been tuned for the forward row change with the help of the ROS navigation tuning guide,
see [5]. The ADIR did not attempt a backwards motion but instead started a rotary
recovery, meaning it crashed in the surrounding cartons. It is unclear if it would have
worked in proper light conditions.

Configuration 2

Global planner global planner

Local planner teb local planner

Light condition Dusk and LED tube

Number of waypoints 11

Pre generated map No

Table 9.11: Testing parameters in-field backwards row, configuration 2

Upon testing in the FHGR testing environment the test failed immediately since the
robot did not know the environment behind him. The ADIR was not able to navigate
into the next row without already knowing the environment.

Reason for this being a limitation in the teb local planner, which does not allow goals
outside of a already known area.
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9.3.4 In field results

Neither configuration has been able to execute a working row change.

9.3.5 Summary backwards row change

The backwards row change has only been partly successful.

Driving from one row into the next one in the simulation was only successful when a
pre generated map was passed to the ADIR with about eleven waypoints. Using the
backwards row change in an environment unknown to the ADIR did not work.

Testing the row change backwards in the testing environment at the FHGR has not
been successful. Worth mentioning is, that the testing time was around 5pm where the
light level was most likely not sufficient enough anymore for the stereo camera to work
properly. Having only a limited time at the test facility, development was halted at this
point.
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10 Conclusion

10.1 PCT

Pros Cons

• Easy usage
• Parameters can be added

• Difficult installation and us-
age for people unfamiliar with
Python

• Window is not scaleable

10.1.1 Results

The PCT has been successfully structured and programmed. After getting feedback in
the concept decision meeting, additional inputs were added, for a picture to be shown
with all parameters on it. It is also easily possible to add additional parameters in the
future, when necessary. It has a simple design which allows easy and straight forward
usage.

10.1.2 Evaluation

The program fulfils all must have requirements from the specification list. At least six
parameters are taken into account ID 9, the output of the preset creation tool is a ”ROS
YAML” file ID 10. The PCT is programmed with python ID 11. The PCT only saves the
preset if all parameters are filled out ID 12. The generated YAML file can be transferred
onto the robot via USB ID 13.

For a full list of fulfilled requirements see Attachment 5.

10.1.3 Problems/Open points

Installing the program requires the installation of additional libraries. This could be
managed by making a python executable which allows for even easier usage. The window
of the application is not scaleable which looks either smaller or bigger depending of the
display resolution.
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10.2 OBUI

Pros Cons

• Easy use
• Low power consumption
• Multiple voltages possible for
power delivery

• Not waterproof

10.2.1 Results

The hardware for the OBUI was selected and meets the requirements. Besides switching
the green LED for a red one since the supplier could not deliver it in time. The electronics
are neatly packed inside a box which can be easily opened by four screws on the back.
The emergency button was left out since it was already implemented on the ADIR.

10.2.2 Evaluation

The system does fulfill all must have requirements. The user can choose between five
presets ID 20 and is able to push a button to switch between manual mode and auto
mode ID 21 and an Arduino Uno R4 minima is used ID 22 which was specified. As a
simple proof of concept it works reliably.

For a full list of fulfilled requirements see Attachment 5.

10.2.3 Problems/Open points

The microcontroller could be placed more on the side of the box for a easier cable plug
in. Additionally the box is not waterproof and using it in field without waterproofing
provides a slight risk, should there be any rogue droplets from the sprayer.
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10.3 Row change

Pros Cons

• Generated its own trajectory
based on the environment.

• Detects sudden obstacles
• Utilizes stereo camera
• High precision odometry

• Slow row change
• Works unreliably in dark
light conditions

• Can not detect obstacles
while driving backwards

• Not always friendly to the
ground

10.3.1 Results

The row change fulfills most of the must requirements. A row change forwards is possible
in the FHGR testing environment and in the simulation. A row change backwards was
not achieved in the FHGR testing environment. If it would have worked is unclear since
the light conditions were not good enough for a proper test. In the simulation however,
it managed itself quite well.

However, as mentioned previously, working in moderate to bad light conditions lowers
the accuracy tremendously.

10.3.2 Evaluation

The must have requirements were almost all fulfilled. Requirement ID1, ID2 are fulfilled
since the row change starts upon receiving said messages. ID3 work in the simulation
but is not confirmed to work in the testing environment of the FHGR.

ID 4 is fulfilled since when the ADIR does a row change forward it drives into the next
row forwards. ID 5 is not fulfilled since in the testing environment it was not confirmed
if the ADIR would have driven backwards into the next row, it is worth mentioning that
it has been working in the simulation. ID 6 is halfway fulfilled with the robot taking
the parameters given to him and calculating a trajectory in a predetermined space is
working with the row change forwards and backwards following the trajectory backwards
is not confirmed in the testing environment.

For a full list of fulfilled requirements see Attachment 5.

10.3.3 Problems/Open points

The biggest problem is the use of the stereo camera in not sufficiently lit areas. It limits
the usage of the ADIR in darker environments since the robot can not track its current
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position properly anymore.

A calculated path is made but can not be passed as standalone message to the local
planner. To implement this, it is necessary to implement the row change trajectory
planner as a move base plugin, which was not possible in the given time frame.

Given a published path, the teb local planner should be able to follow the path closely
instead of following the waypoints one after another.

Because of time constraints, the backwards turn to the left has been implemented, but
not yet sufficiently tested.

With the current setup, the ADIR does sometime damage the ground in the form of
steer marks. Because of the global planner, it often drives to the next waypoint, stands
still and then proceeds to turn on the spot until the correct position is reached.

10.4 Outlook and Recommendations

There are still a few things left that can be improved. All the things that can be improved
are listed below with a short description.

10.4.1 PCT

• Software

– As of now the main window is not scaleable and does look different depending
on the display resolution. Implementing the function scaleability is recom-
mended.

– The current installation of the PCT can be considered difficult for people who
are not familiar with Python or Linux. A Python executable would provide
the possibility to just use the software with a double click.

10.4.2 OBUI

• Box design

– The box is as of now not waterproof. An application of a sealing agent to the
shell is recommended.

– The microcontroller could be placed differently to plug in the USB cable. As
of now, one has to open the back panel.

10.4.3 Row change

• Row change trajectory
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– The current path is not directly used, only certain points from it. To make
the most of it, a global planner could be written to pass the path to the local
planner directly. The code for the path planner already exists, but it needs
to be rewritten in c++ and integrated as a move base plugin.

– Since the robot has to drive a certain distance backwards to the next row,
the turning direction could alternate during the program cycle. This would
prevent the trajectories from hitting either wall at the sides.

• Obstacle avoidance on the rear side

– Additionally, another stereo camera could be used to check for obstacles on
the back. This would also enable for the current setup with teb local planner
to work. Additionally, backwards row changes might not be needed at all.

– Using a LIDAR is also an option, but the position could pose problems in
detecting objects of different heights.

• Light conditions

– Only using the ADIR in areas were it is well lit enough for the stereo camera
to function properly.

– It may be beneficial to limit the stereo camera’s depth in order to save on
processing power.

• Ground conditions

– At the moment the ADIR does leave black skid marks on the ground while
turning on the spot. A different type of tire material could prevent that,
enabling easier testing indoors.

• Plug for NVIDIA Jetson power supply

– If the NVIDIA Jetson should stay on the ADIR, a proper power plug would
be recommended. The current one is 3D printed without reverse polarity
protection.

• Hardware setup for remote operation

– A general setup of components required for remote work on the NVIDIA
Jetson is recommended for autonomous testing since being to close to it while
testing provides a high risk for accidents.

• Placement of emergency button

– The emergency button should be replaced so that it is accessible from every
side of the ADIR. If the robot traps a user between him and a wall with its
backside, it proved to be impossible to reach the front to press the emergency
stop button.
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11 Attachments

1. CAD Files

• Standing rows model
Description: CAD model of standing rows for Gazebo simulation.
File: standing row.step
Date and Time: 07.01.24 15:51

• Hanging rows
Description: CAD model of hanging rows for Gazebo simulation.
File: hanging ros.step
Date and Time: 07.01.24 15:51

• Plug
Description: CAD model of plug for power supply from the ADIR to the
NVIDIA Jetson.
File: Plug.step
Date and Time: 04.01.23 18:57

• OBUI
Description: CAD model of the OBUI.
File: OBUI.step
Date and Time: 04.11.23 18:59

2. Calculations

• Trajectory calculations
Description: Pythonfile for calculating the trajectories.
File: row change trajectory.py
Date and Time: 22.12.23 18:13

3. Circuit diagram

• OBUI circuit diagram
Description: Circuit diagram for OBUI.
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File: obui.pdf
Date and Time: 05.01.24 11:37

• OBUI BOM
Description: Bill of materials OBUI.
File: BOM.xlsx
Date and Time: 07.01.24 18:44

4. Datasheets

• Encoder
Description: Datasheet of used encoder in OBUI.
File: PEC11R.pdf
Date and Time: 04.01.24 18:57

• Transistors
Description: Datasheet of used transistors in OBUI.
File: 2N4401.pdf
Date and Time: 05.01.24 11:47

• Arduino Uno R4 Minima
Description: Datasheet of used microcontroller in OBUI.
File: ABX00080-datasheet.pdf
Date and Time: 04.01.24 18:56

• LEDs
Description: Datasheet of used LEDs in OBUI.
File: AV02 0373EN DS HLMP ELxx 2018 03 12-1827869.pdf
Date and Time: 04.01.24 19:17

• LCD
Description: Datasheet of used LCD in OBUI.
File: JDH 1804 Datasheet.pdf
Date and Time: 04.01.24 19:17

5. Requirement

• Requirement specifications
Description: Full requirements specification document.
File: Requirements specifications v1.9.pdf
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Date and Time: 24.10.23 15:34

• List of fulfilled requirements
Description: Excel sheet of fulfilled requirements.
File: List of fulfilled requirements.xlsx
Date and Time: 07.01.24 13:45

6. ROS diagrams

• ROS node and topic graph
Description: Rosgraph of nodes and topics.
File: rosgraph.png
Date and Time: 06.01.24 16:38

7. Software

• OBUI

– Description: Code for the OBUI.
File: OBUI akt.ino
Date and Time: 05.01.24 23:12

– Description: State event diagram for OBUI code.
File: SED.png
Date and Time: 19.12.23 17:36

– Description: State event table for OBUI code.
File: OBUI SET.ods
Date and Time: 19.12.23 18:06

• PCT
Description: Code for the PCT.
File: pct.zip
Date and Time: 07.01.24 14:17

• Row change
Description: Catkin workspace of row change.
File: catkin ws.zip
Date and Time: 07.01.24 12:54
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• Map converter
Description: Code for map converter.
File: ros map converter.zip
Date and Time: 07.01.24 14:18

8. Timetable
Description: Timetable with original planned timeline and added actual timeline.
File: Timetable.ods
Date and Time: 07.01.24 14:11

9. Concept Ideas
Description: List of all concepts that were discussed.
File: Concept Decisions.pdf
Date and Time: 07.01.24 16:18
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